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We present results from a detailed numerical study of the kinetics of phase transformations in a model
two-dimensional depletion-driven colloidal system. Transition from a single, dispersed phase to a two-phase
coexistence of monomers and clusters is obtained as the depth of the interaction potential among the colloidal
particles is changed. Increasing the well depth further, fractal clusters are observed in the simulation. These
fractal clusters have a hybrid structure in the sense that they show hexagonal closed-packed crystalline ordering
at short length scales and a ramified fractal nature at larger length scales. For sufficiently deep potential wells,
the diffusion-limited cluster-cluster aggregation model is recovered in terms of the large-scale fractal dimen-
sion Df of the clusters, the kinetic exponentz, and the scaling form of the cluster size distribution. For
shallower well depths inside the two-phase coexistence region, simulation results for the kinetics of cluster
growth are compared with intermediate-stage phase separation in binary mixtures. In the single-phase region,
growth kinetics agree well with a mean-field aggregation-fragmentation model of Sorensen, Zhang, and Taylor.
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I. INTRODUCTION

The general problem of how a dispersed phase, such as
particles in a colloid or molecules in a solution, come to-
gether, when destabilized, to form a condensed phase, such
as aggregates, gels, or precipitated crystalline solids, is of
fundamental importance for controlling the assembly of the
dispersed phase into a useful material[1]. Parts of this grand
problem have seen considerable previous research, such as
irreversible aggregation[2] and the formation of fractal ag-
gregates[3], gelation, spinodal decomposition[4], nucle-
ation, and early studies of growth during precipitation[5].
However, a general theory that encompasses all of these re-
lated phenomena is lacking.

Colloidal solutions can display a rich series of phase tran-
sitions between gas, liquid, and solid phases[6,7]. The liquid
phase can be amorphous or liquid crystalline, and the solid
phases can be crystalline, amorphous(perhaps fractal), and
gel. These possibilities are controlled by the potential be-
tween the disperse components and the kinetics of the phase
transition. A fluid-to-crystal transition occurs if the potential
is solely hard sphere. The addition of an attractive potential
brings on three-phase equilibria. A key parameter that causes
large changes in the phase diagram is the relative range of
the attractive interaction between the colloidal particles. As
the relative range of the attractive interaction lessens, the
system develops a gas-crystalline coexistence with a meta-
stable liquid-liquid coexistence region.

A theoretical understanding of the colloidal phase dia-
gram leads to better control of colloidal growth kinetics. For
example, colloidal aggregation, which is often irreversible,
can be made reversible on experimental time scales by tai-
loring both the strength and range of interaction between
colloidal particles. Reversible aggregation of colloids is
known to exhibit various intriguing phenomena[6,7], such
as transient gel formation, compactification, and crystalliza-
tion. Moreover, reversible aggregation has a striking similar-

ity with other phase changes, such as spinodal decomposition
and the formation of precipitated crystalline solids from so-
lutions. A quantitative understanding of reversible aggrega-
tion is thus needed for a unifying description of the transition
from a general dispersed phase to clusters, and for a greater
control over the self-assembly and material properties of
various colloids.

Manipulation of the interaction potential between colloi-
dal particles can be achieved in several ways. For a charge-
stabilized colloidal solution, this can be done by the addition
of salt or surfactant solution so that asecondary minimum[8]
in the interaction potential forms. Another way to control the
interaction potential between colloidal particles is to induce a
depletion interaction by adding a nonadsorbing polymer
[9–11] (or a different sized colloid[12]) in an otherwise
stable colloidal solution. A major advantage of the latter sys-
tems is that the strength and range of the depletion interac-
tion can be easily controlled by varying the polymer concen-
tration and the length of the added polymer chains.

The phase behavior of depletion-driven colloids has been
studied extensively both theoretically and experimentally.
The equilibrium behavior of these systems being reasonably
well understood, much of the recent work has been directed
to understanding the kinetics of phase transitions[12,13] and
colloidal gelation[14] (and its relation to glass transition[15]
and the more general jamming transition[16]) in these sys-
tems. Hobbie[12] has studied growth kinetics of the crystal-
lization process in depletion-driven colloids and compared
the experimental results with mean-field theories of aggrega-
tion fragmentation. Direct observation of crystallization and
aggregation has been carried out more recently by de Hoog
et al. [13] by varying the polymer concentration, hence the
depth of the depletion potential. Brownian dynamics simula-
tions [17–20] have also been carried out to study transient
gel formation and crystallization in these systems. In particu-
lar, Soga, Melrose, and Ball[17,18] (SMB) have observed a
variety of nonequilibrium behaviors in their simulations by
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varying the strength of the depletion potential. Evidences of
metastability, homogeneous nucleation, kinetically arrested
gel state, and density instability were reported by SMB in
their simulations. The use of computer simulations to study
aggregation kinetics in these systems is particularly useful,
as one can avoid sedimentation-related complications seen in
experiments.

In this paper, we present the results from extensive
Brownian dynamics simulations for a system of colloidal
particles interacting via the depletion potential. We assume
that the depletion interaction can be approximately ac-
counted for by an effective two-body interaction between a
pair of colloidal particles, as suggested by Asakura-Oosawa
[9] and Vrij [10]. In contrast to SMB, we focus on lower
monomer concentration(far away from the percolation
threshold) and restrict ourselves to two dimensions. This al-
lows us to carry out a detailed comparison of the cluster
morphology and aggregation kinetics to traditional models of
aggregation and fragmentation. Clusters obtained in the
simulations range from dense, faceted crystals to fractal ag-
gregates, which show ramified morphology on large scales
but hexagonally packed crystalline morphology on short
length scales. Increasing the depth of the depletion potential
well, a transition from a dispersed phase to a coexistence of
dispersed and solid phase is found. Near the transition point,
a formation of clusters with a round shape is observed. As
the well depth is increased further, one first obtains elongated
clusters, and then fractal clusters form for deep enough well
depths. Our simulations also show how growth kinetics
evolve from the irreversible limits to systems which come to
equilibrium over the simulation time due to fragmentation.

The rest of the paper is organized as follows. In Sec. II we
describe the model and numerical method employed in our

work. In Sec. III we present simulation results and compare
them with traditional aggregation, aggregation-
fragmentation, and phase separation models. Finally, we con-
clude in Sec. IV with a brief summary and discussion of the
results.

II. NUMERICAL MODEL

In our Brownian dynamics simulations[21], we consider
a two-dimensional(2D) system of linear sizeL=256s con-
taining Nm=13,107 colloidal particles of massm and diam-
eters. This sets the monomer area fraction to befv<0.157.
We also setm=1 ands=1, and measure all distances in units
of s. Periodic boundary conditions are enforced to minimize
wall effects. The equations of motion for the colloidal par-
ticles read as

rẄi = − ¹W Ui − GrẆi + WW istd, s1d

where G is the monomer friction coefficient andWW istd,
which describes the random force acting on each colloidal
particle, is a Gaussian white noise with zero mean and satis-

fies the 2D fluctuation-dissipation relationkWW istd ·WW jst8dl
=4kBTGdi jdst− t8d. Hydrodynamic interactions, including lu-
brication forces, are ignored in the simulation as they might
not be of predominant importance for a study of quiescent
secondary minimum colloids[22]. The potentialU acting
upon each colloidal particle has a twofold contribution: the
two-body depletion potential of Asakura-OosawasUAOd, plus
a repulsive hard-core-like interactionsUhcd given by the fol-
lowing expressions,

UAOsr ijd
kBT

= 53fP

2z3 Fs1 + zd2r ij −
1

3
r ij

3 −
2s1 + zd3

3
G , for r ij , s1 + zd

0, for r ij . s1 + zd
6 , s2d

and

Uhcsr ijd
kBT

= r ij
−n. s3d

In Eq. (2), z is the size ratio between a polymer chain and a
colloidal particle, and is set equal toz=0.1 as in previous
works [17,18]. Thus the interaction is quite short ranged and
is cut off at a reduced distance of 1.1.fP is the polymer
volume fraction which controls the strength of the depletion
interaction in the Asakura-Oosawa model. In the hard-core-
like repulsive interaction given by Eq.(3), we have setn
=36. Exponentsn,36 are reported[23] to lead to anomalies
when a hard-core mimic is required in the potential. The total
pair potentialU=UAO+Uhc passes through a minimum value
sUmd which is related to the polymer volume fractionfP, as

tabulated in Table I. In what follows, we will characterize the
strength of the potential in terms of the absolute value of the
minimum potential depth,uUmu, instead of the polymer vol-
ume fractionfp. We chooseG=0.5, and a time stepDt
=0.005 in reduced time units ofssm/Umd1/2 with massm
=1. All simulations start from a random initial monomer
conformation and the results for the kinetics are averaged
over more than 100 runs.

III. RESULTS

A. Cluster morphology

Transition from a single, dispersed phase to a state in
which the solid phase starts to develop in the two-phase re-
gion is observed in the simulations whenuUmu is larger than
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a critical valueUc. From our simulations, we estimate that
Uc<3.130kBT for our choice of monomer area fractionfv.
For smaller values ofuUmu, small fluctuating clustersin the
dispersed phase form and dissolve over some correlation
time. The linear size of these fluctuations increases as one
approaches the transition. This is expected as the correlation
length in the single phase should increase as a power law
near a critical point. A phase diagram for the model consid-
ered here is known accurately in three dimensions[24], but
not in two dimensions. For this reason, a quantitative identi-
fication of the quench points chosen in our work on the 2D
phase diagram is not possible.

For computing cluster properties, we consider two neigh-
boring particles to belong to the same cluster if the distance
between their centers is less than or equal to the range of the
interaction, i.e., 1+z (or 1.1 for our choice ofz ) in units of
s. Figure 1 shows a snapshot for a system withuUmu
=3.125kBT. In this case the system is in the single phase as
uUmu,Uc and the largest observed fluctuating cluster has a
size of less than 100 particles. As shown in the inset of Fig.
1, these small clusters have amorphous structures. No evi-
dence of crystal formation is found in these clusters. If we set
uUmu close to the critical value, but slightly deeper thanUc,
the nucleation and growth of round clusters occur. The
growth of only one round-shaped cluster in our finite-sized
simulation box is observed in Fig. 2 foruUmu=3.135kBT. This
value ofuUmu puts the system barely in the two-phase region.

Increasing the depth of the potential welluUmu further,
nucleation becomes more heterogeneous in our simulation
box, as can be seen in the top-left snapshot of Fig. 3 for
uUmu=3.25 at an early time. For this value ofuUmu, large
round-shaped clusters in a sea of monomers(and small clus-
ters) are observed at late times(left column of Fig. 3). The
average coordination number per particle inside such a clus-
ter is close to 6, and as shown in Fig. 4(c), hexagonal pack-
ing of the particles is clearly present inside the cluster. In
Fig. 4, details of cluster shapes are shown for several values
of the potential well depth. Once two clusters collide with
each other, the shape of the newly formed cluster remains
anisotropic for some time while it evolves toward a circular

shape to reduce interfacial energy. During this course, the
resulting cluster bears the history of the collision in its shape
[such as in the ordering of single crystal domains inside the
cluster as in Fig. 4(e)]. The timescale for this shape evolution
depends critically on the potential well depthuUmu, as we will
see shortly.

Increasing the degree of quenching into the two-phase
region by settinguUmu=4.0kBT, rather elongated clusters that
grow with time are seen(Fig. 3, central column). In this case,
the potential well is deep enough to slow down the move-
ment of monomers on a cluster surface, which is needed for

TABLE I. Relation between nonadsorbing polymer volume frac-
tion fp and the absolute valuesuUmud of the total interacting poten-
tial U.

fp uUmu /kBT

0.1768 2.000

0.2110 3.000

0.2262 3.125

0.2266 3.135

0.2314 3.250

0.2410 3.500

0.2610 4.000

0.2800 4.500

0.2980 5.000

0.3330 6.000

0.3670 7.000

FIG. 1. Snapshot of the simulated colloidal system att
=10 000. Here, the well depth is set touUmu=3.125. the system is in
the single-phase region and the dispersed phase is observed.

FIG. 2. Snapshot of the simulated colloidal system att
=10 000 foruUmu=3.135. A single round-shaped cluster is growing
in the simulated box surrounded by the dispersed phase.
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a reduction of interfacial energy. Therefore, new collisions
are produced before anisotropic clusters formed from previ-
ous collisions have enough time to reshape themselves into
circular clusters. As a result, the clusters seen in this case are
elongated even at very late times. For an even larger well
depth, such asuUmu=7.0kBT (Fig. 3, right column), fractal
clusters are obtained. We speculate that the interfacial
tension-driven surface reorganization of monomers is almost
frozen in this case, and the cluster shape results mainly from
random cluster-cluster collisions as in a traditional diffusion-

limited cluster-cluster aggregation(DLCA) or reaction-
limited cluster-cluster aggregation(RLCA) models. How-
ever, even for this deep well depth, the aggregates show
hexagonal closed-packed crystalline ordering at short length
scales[Fig. 4(f)], while displaying ramified fractal nature at
larger length scales. To be specific, this cluster morphology
cannot be reproduced by a traditional DLCA modeling for
which the typical coordination number of a particle in a clus-
ter is <2. Large-scale morphology of the simulated clusters
display close similarities with aggregates observed experi-

FIG. 3. Temporal evolution for three different
quenches. The first column shows snapshots att
=3000, 6000, 23 000 and 40 000 foruUmu=3.25.
The second column shows snapshots att=3000,
20 000, 43 000, and 84 000 foruUmu=4.0. The
third column shows snapshots at t
=1000, 3000, 10 000, and 86 000 foruUmu=7.0.
Cluster morphology shows a distinct change as
the depth of the potential is varied.

FIG. 4. Details of cluster morphology for sev-
eral values of the potential well depth. From top
left to bottom right, we show the results for
uUmu=3.125sad, 3.135sbd, 3.25scd, 4.0sdd, 5.0sed,
and 7.0kBTsfd, respectively. Cluster morphology
for uUmu=3.125 shows a dispersed phase with
noncrystalline structures(a). For well depths
larger than the transition valueUc.3.130, par-
ticles are arranged hexagonally inside the clus-
ters. When collision between two clusters is re-
cent, the history of such a collision can be seen in
the resultant cluster shape.
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mentally by de Hooget al. [13] and Andersonet al. [25] in
the earlier stages of the aggregation in depletion-driven col-
loids, before sedimentation becomes crucial. It should be
noted here that such a mixed morphology of aggregating
clusters was observed by Skjeltorp[26] in 2D aggregates of
polystyrene spheres attracting via a secondary minimum. In
such a system, the superposition of a screened electrostatic
repulsion and a van der Waals attraction leads to the forma-
tion of a secondary minimum[8,27] in the potential, with a
rather high energetic barrier between the primary and sec-
ondary minima. The barrier between these minima prevents
irreversible aggregation and these charged colloids can effec-
tively interact through the secondary minima.

B. Comparison with traditional models of aggregation and
phase separation

1. Fractal dimension

The next step in our analysis is to carry out a quantitative
comparison of the results from Brownian dynamics simula-
tions with more traditional models, such as DLCA and
RLCA. These limiting nonequilibrium models have been
quite successful in describing aggregation. In DLCA, the
rate-limiting step is the Brownian diffusion by which the
particles meet and stick irreversibly, and in RLCA, the lim-
iting step is the small probability of clusters sticking when
they touch. A general feature of such irreversible processes is
that the resulting structures are fractals with characteristic
fractal dimensions. However, if the magnitude of the inter-
action potential between colloidal particles is comparable to
thermal energykBT, both rearrangement and fragmentation
(hence reversible aggregation) of clusters can take place. In
such situations, one needs to compare the results of current
Brownian dynamics simulations with models that consider
both aggregation and fragmentation.

The large length scale cluster morphology obtained in our
simulations is quantified by computing the cluster-ensemble
averaged fractal dimensionDf. This is achieved by writing
N,Rg

Df, whereRg is the radius of gyration of an individual
cluster containingN particles. Figure 5 shows the temporal
evolution for the fractal dimension in two representative
cases. Computation of the fractal dimension confirms a tran-
sition from compact clusters withDf =2 to fractal clusters
when we increase the well depth. We find that the fractal
dimension for a large potential well depth is given byDf
.1.4. Within the statistical error of our data, this value ofDf
is the same as the fractal dimension obtained in 2D DLCA
models. Thus, Brownian dynamics simulations for a deep
well depth reproduce the DLCA limit in terms of the large-
scale fractal dimension, even though the short length scale
structure of the clusters are totally different in these two
models.

2. Growth kinetics

Since the potential well depth dictates cluster morphol-
ogy, it is expected to control cluster growth kinetics as well.
We have studied three different regimes(or “quench depth”
using terminology of fluid-fluid phase separation) of growth

kinetics: deep potential well depth(deep quench in the two-
phase region), shallow potential well depth(shallow quench
in the two-phase region), and quenches in the single-phase
region.

(a) Deep quench in the two-phase region. We compute the
mean size of clusterssstd (as the number of monomers per
cluster) and the cluster-size distributionnsNd. The kinetic
theory based on the Smoluchowski equation predicts that for
irreversible aggregation at late times,

sstd , t z, s4d

wherez is the kinetic exponent that depends on the homoge-
neity constant,l, of the aggregation kernel,

z= 1/s1 − ld. s5d

For the DLCA model with a Brownian coagulation kernel,
a scaling argument[28,29] yields l=sd−3d /Df in the dilute
limit. In three dimensions, this providesl=0 and z=1 as
expected[2]. In two dimensions, however, this leads tol
=−1/Df =−0.7 with Df =1.4 and hencez=0.59 in the dilute
limit.

Another factor that influences growth kinetics of fractal
aggregates is thevolume fraction occupied by the clusters,
f v

c. Since the fractal dimensionDf of the clusters is less than
the space dimensiond, f v

c increases throughout aggregation,
and evolution to a crowded state takes place.f v

c can be com-
puted in terms of the perimeter radius of the clusters which,
is related to the cluster radius of gyrationRg. Thus, cluster
crowding can be understood by considering the ratio of the
cluster center of mass to the cluster nearest-neighbor center-
of-mass separationRnn, to the cluster radius-of-gyrationRg,
which scales with time asRnn/Rg~ t−zsd−Dfd/sdDfd. Note that
Rnn/Rg→0 at late times, indicating gelation occurring in the

FIG. 5. Time evolution of the cluster averaged fractal dimen-
sion,Df for well depthsuUmu=3.25 and 7kBT. For the lower value of
uUmu, compact clusters are found for which the fractal dimension is
close to 2. We have calculated the fractal dimension as a function of
time, including only clusters with a size equal or higher than 10%
of the size of the largest cluster in the system. Inclusion of too small
clusters produces a slight bias of the slope, which results inDf

being larger than 2. When increasinguUmu, a gradual transition to
fractal clusters is observed. Fractal clusters foruUmu=7kBT have a
fractal dimension ofDf .1.4, close to the 2D DLCA result.
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system. In practice, however, the system gels well before this
condition is reached as the clusters are ramified. It is known
that the kinetic exponentz increases as the system gets dense
[30], i.e, as the cluster volume fractionfv

c increases. For an
intermediate value off v

c, scaling arguments[28] yield z
.1.28 in three dimensions andz.0.67 in two dimensions.

Our results forsstd vs t for deep potential wells(such as
with uUmu=6.0 and 7.0kBT) are presented in Fig. 6 as a log-
log plot. The measured kinetic exponent isz=0.74±0.05 in
each case. This value ofz is rather similar to the 2D scaling
result in the intermediate regime mentioned above[28] and
also to the kinetic exponent obtained in large-scale 2D
DLCA simulations[31] with a fair degree of cluster crowd-
edness. This agreement strongly indicates that fragmentation
does not play an important role over the simulation time for
these choices of the potential well depth.

The kinetic exponentz can be alternatively obtained by
measuring the temporal evolution of the mean cluster radius
of gyration kRgl. In the scaling description of DLCA,kRgl
, t a with a=z/Df. Therefore, if fractal dimensionDf is
known,z can be deduced from a log-log plot ofkRgl vs time
t. In Fig. 7 we show such a log-log plot for various values of
uUmu. For computingkRgl, we only use clusters containing
more than four particles. For bothuUmu=6.0 and 7.0kBT we
obtaina=0.52±0.04, which yieldsz=0.73 forDf =1.4. Thus,
both methods of measuring the kinetic exponentz show good
agreement with each other for deep well depths.

(b) Shallow quench in the two-phase region. For shal-
lower well depths in the two-phase region, fragmentation of
clusters can take place. However, it is expected that fragmen-
tation predominantly occurs at the surface of the cluster; this
is the celebrated evaporation-condensation mechanism be-
hind Ostwald ripening[32]. In addition, surface reorganiza-
tion of clusters can take place to reduce interfacial tension.
One of the most important characteristics of cluster growth
under spinodal decomposition is that the clusters are com-
pact and, as a result, both cluster nearest-neighbor separation
Rnn and the cluster radius-of-gyrationRg grow with thesame
temporal exponent. In other words, there is only one length
scale in the system. The growth law in these cases can be

generally written asRgstd, t n. It is well established[4] that
n=1/3 atlate times in both two and three dimensions, while
at intermediate times, dominated by surface diffusion and
coalescence of diffusing clusters, the growth-law exponent
can be characterized[32,33] by n=1/4. Wehave plotted a
log-log graph ofkRglstd vs t in Fig. 8 for two shallower well
depths inside the two-phase coexistence. In each case, at in-
termediate times(when the average radius of gyration of
clusters.5 or bigger), we observe the growth of clusters
characterized by an exponent of<1/4. We have checked that
both Rg andRnn do increase proportionately with each other
at these times. ForuUmu=3.5kBT, we also observe anucle-
ation induction timeat the very beginning, after which clus-
ter growth and coarsening take place.

(c) Quench in the single-phase region. In the presence of
fragmentation, Sorensen, Zhang, and Taylor(SZT) [34] have
generalized the Smoluchowski equation on the assumption
that both the aggregation and fragmentation kernels are ho-
mogeneous functions[35,36]. SZT arrives at a general ex-
pression for the evolution of the mean cluster size in terms of
reduced variabless* = s/so and t* = t / to,

FIG. 6. Log-log plot for time evolution of the averaged cluster
size for deep well depths. The kinetic exponent,z, obtained from
linear fits, is given by 0.74±0.05 in each case.

FIG. 7. Log-log plot of radius of gyration vs time for deep well
depths. The exponent,a=z/Df, obtained from linear fits, is given by
0.52±0.04 in each case.

FIG. 8. Log-log plot of radius of gyration vs time for shallower
well depths in the two-phase region. The solid line is a guide to the
eye with a slope of 1/4. Cluster growth at intermediate times is
consistent withRgstd, t n, with n<0.25.
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ds*

dt
= s*l − s*v +2, s6d

whereso is the steady-state value ofsstd at long time, andto
is a characteristic time scale for the approach to equilibrium.
The exponentsl andv stand for the degree of homogeneity
of the aggregation and fragmentation kernels, respectively. It
is clear from our discussion above that the SZT description
of aggregation fragmentation is not applicable in the two-
phase region, where the cluster size increases indefinitely in
the thermodynamic limit. However, in the single-phase re-
gion, where the clusters grow only up to the size of the
correlation length, the SZT equation might have a limited
validity. We numerically solve this first-order SZT differen-
tial equation [Eq. (6)] with the initial condition s* st=0d
=1/so. It is not immediately clear what values ofl andv to
substitute in Eq.(6). As we have discussed, in the dilute limit
of the DLCA modelz=0.59, hencel=−0.7, while for a mod-
erate value of cluster crowdedness,z increases to 0.74 in the
simulations and the correspondingl becomes −0.35. We
choosev=1/2 in themean-field model of SZT to roughly
incorporate the possibility that cluster fragmentation happens
mostly at the surface. As mentioned, we consider two neigh-
boring particles to belong to the same cluster if the distance
between their centers is less than or equal to the range of the
interaction. A comparison with the SZT prediction in the
single phase is carried out in Figs. 9 and 10 foruUmu=2 and
uUmu=3.125kBT, respectively. In these figures we show SZT
predictions along with our simulation results for bothl
=−0.35 and −0.7 andv=1/2. It is clear thatl=−0.7 shows
excellent agreement with the simulation data. This is perhaps
due to the fact that the average cluster sizes are relatively
small throughout the simulation time and cluster crowding
does not substantially modify the dilute limit values ofz and
l. Thus, it is appropriate to substitute the dilute limit value of
l=−0.7 in the SZT model for a comparison with these simu-
lation results.

3. Cluster size distribution

To characterize the cluster size distribution, we invoke a
standard scaling ansatz applicable in many physical situa-

tions [32,37], where cluster distributions are assumed to
obey a scaling law given by

nsN,td =
Nm

sstd2fX N

sstd
C , s7d

where Nm stands for the total number of particles(mono-
mers) in the system andfsN/sd is a general scaling function.
The scaling form assumed for the cluster size distribution
[Eq. (7)] is tested in Figs. 11 and 12 foruUmu=7 and 3.5kBT,
respectively. Results are averaged over more than 100 runs.
The prescribed scaling form seems to work well foruUmu
=7kBT. For such a deep well depth, one would expect that
fragmentation of clusters will be rare and a comparison with
DLCA simulations will be meaningful over the simulation
time. For DLCA, the scaling function can be expressed as
[37]

fsxd = Ax−le−ax s8d

for large values of the scaling variablex=N/s. Here,l=1
−z−1 anda=1−l. If we considerz=0.74 appropriate for this
deep well depth(see Fig. 7), we findl=−0.35 anda=1.35.

FIG. 9. Comparison between simulation results for growth ki-
netics in the single phase and SZT prediction for two sets of param-
eter values. Here,uUmu=2.0kBT.

FIG. 10. The same as in Fig. 10, exceptuUmu=3.125kBT here.

FIG. 11. Scaling of the cluster size distribution foruUmu
=7.0kBT. The results are averaged over 150 runs. The solid line is
fit to the data according to Eq.(8) with l=−0.35 anda=1.35 for
scaling variableN/sù1.
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Figure 11 shows that Eq.(8) with these values ofl anda fit
the scaled cluster size distribution quite well for large values
of x.

Scaling does not seem to work so well foruUmu=3.5kBT
(Fig. 12). For small values of the scaling variable and at
earlier times, a power law with an exponent close to −1.5 is
found in the scaling function. Such a power-law decay of
scaling functions are reminiscent of a RLCA behavior. We
should point out that a similar exponent of −1.5 has been
observed by Hobbie[12] in the scaling function for a binary
colloidal mixture in which depletion forces arise from the
difference in size between two colloids. The origin of the
RLCA-type power-law behavior for this shallow well depth
is perhaps due to the fact that clusters do not stick the first
time they approach each other. There is also a hint of an
exponential decay in the size distribution for largex as seen
by Hobbie. At later times, the “scaling function” changes
appreciably, displaying the presence of a broad maximum at
an intermediate value ofN/s.

IV. CONCLUDING REMARKS

To provide a unifying description of the transition from
the dispersed to the solid phase(which includes both fractal
and crystalline aggregates), we have carried out a detailed
study of the kinetics of phase transformations in a model 2D
colloidal system. The interaction among colloidal particles in
this work arises from the depletion effect due to the addition
of a nonadsorbing polymer, and is modeled as an effective
two-body potential. Although the depletion force is assumed
to be instantaneous in this work, recent work[38] shows that
the depletion force will have a time dependence that will in
general affect colloidal kinetics. However, this time depen-
dence is quite weak for the size parameterz used in our
work. Thus, we do not expect this to substantially change our
conclusions.

Large-scale morphology of clusters obtained in the simu-
lation show good agreement with those observed by Hooget
al. [13] in their experimental work on depletion-driven col-
loids. We characterize the morphology of clusters for various

values of the magnitude of the potential well depthuUmu.
There exists a critical value of this well depthsUcd in the
model. WhenuUmu,Uc.3.130kBT, the system remains in a
single phase(for our chosen value of the monomer area frac-
tion f) characterized by a dispersed phase of monomers and
small clusters. A transition from this dispersed phase to a
two-phase coexistence takes place when the system is
quenched, such thatuUmu.Uc. In the two-phase region, a
dispersed and hexagonally packed crystal phase can coexist.
Gradual transition from round cluster growth to the forma-
tion of elongated clusters is observed as the well depth is
increased. Increasing the well depth even more, fractal clus-
ters are observed in the simulation. These fractal clusters
have a hybrid nature in the sense that the aggregates show
hexagonal closed-packed crystalline ordering at short length
scales and a ramified fractal nature at larger length scales.
For sufficiently deep potential wells, the large-scale fractal
dimension of the clusters are close to those obtained in simu-
lations of DLCA model in two dimensions,Df .1.4.

Further quantitative comparisons with the DLCA model
are carried out next in the limit of deep potential well depths.
Kinetic exponents obtained from both the mean number of
particles in a cluster and the average cluster radius of gyra-
tion provide strong support that the DLCA limit in the kinet-
ics can be achieved for deep potential wells. In addition, the
scaling function for cluster size distribution matches the
DLCA scaling form for deep potential well depths. For shal-
lower well depths in the two-phase region, growth kinetics is
compared with early-time theories of phase separation. In the
single-phase region, comparison of simulation results with a
mean-field aggregation-fragmentation model shows good
agreement.

Our work clearly demonstrates the importance of Brown-
ian dynamics simulations in the study of colloidal aggrega-
tion, and more generally, for studying the transition from a
dispersed to a solid phase. Past theoretical studies of fractal
aggregates in colloids, for example, typically started from
the DLCA model, which turns out to be the irreversible lim-
its of our simulation and are recovered for a deep well depth.
In contrast, aggregates that cross over from fractal to com-
pact crystalline morphology can be easily studied in Brown-
ian dynamics simulations by changing a simple parameter of
the model. More importantly, growth kinetics and aggregate
size distributions that evolve from nonequilibrium to equilib-
rium limits can be accessed in a reasonable amount of com-
puter time. We expect that our results would stimulate further
theoretical and experimental studies towards the understand-
ing of the transition from a dispersed to a solid phase in
widely different physical situations.
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FIG. 12. Scaling of the cluster size distribution foruUmu=3.5.
The results are averaged over 100 runs. A solid line of slope −1.5 is
added to guide the eye.
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